Posts Tagged ‘batteries’

Batteries Will Replace Fossil Fuels

Batteries are destined to change the future in many ways. One of those ways is by completely disrupting the fossil fuels industry by replacing gasoline powered vehicle with electric vehicles. What is one of the key limiting factors on battery production? Cost. The cost of battery production has dropped significantly in recent years, but it is still expensive to produce batteries. Not to mention, the energy contained in batteries is still substantially less than that of gasoline or other fossil fuels. Therefore, significant obstacles must still be overcome. Even with these obstacles, batteries will someday replace the need for fossil fuels in many applications. Electric cars have recently changed from a niche novelty into a mainstream reality. The main reason for this is because of the decrease in cost and availability of batteries. What was once a very expensive component to produce is now much less expensive. Experts at Bloomberg Energy Finance predict that batteries must reach approximately $100 per kilowatt hour to produce. Current battery production costs are somewhere around double that, and at the rate that production costs have dropped, this goal should be attainable by the year 2025. Additionally, demand for electric vehicles continues to increase. A report from Bloomberg states that worldwide demand for electric vehicles will continue to increase rapidly in the next 30 years. By the year 2040, nearly half of new car sales are forecast to be electric vehicles, up significantly from the roughly 3 percent of sales that electric vehicles currently make up. Aside from transportation uses, batteries will also continue to enhance and improve the world’s power grid. Technologies such as wind power will be able to take advantage of improving battery technology by using batteries to store energy and release it into the power grid when electricity demand is high but wind production is low. This will benefit many types of renewable energy technology as the world’s energy consumption continues to rise.

-taken from

EV Battery Technology Shows Promise

A French company is currently developing a new energy storage device that may potentially see itself in electric vehicles. The company, called NAWA (short for NAno technology to fight against global Warming), is currently developing “ultra-capacitors” for use as storage devices that can be rapidly charged and discharged to match demands from electric vehicles. The ultra-capacitors are aiming to help some of the current limitations put on electric car batteries such as poor energy density and limitations on charging and discharging. The ultra-capacitors will be designed to be extremely efficient and may eventually have energy densities that rival current lithium celled batteries. Currently, the ultra-capacitors have superior energy density to current capacitor based energy storage and much better efficiency. NAWA is developing the ultra-capacitors using a state of the art technique that aligns series of carbon nanotubes in rows to allow the electrons to pass through the capacitor with limited resistance. A good analogy to the alignment of the nanotubes is to consider the uniform positioning of bristles on a toothbrush, providing a direct route for the electrons to travel through the ultra-capacitor. Two current issues with electric vehicles that are concerning for would-be consumers deal with the allowable range that electric vehicles are limited to, and how to charge the vehicle when the battery is drained. The new ultra-capacitors aim to help these two issues by allowing for current electric vehicle batteries to be lighter in weight, more efficient, and able to take a recharge more quickly. To deal with vehicle range limitations and rapid recharging, the carbon ultra-capacitors will supplement current lithium batteries with superior energy density and the ability to regenerate charge through vehicle decelerations, otherwise known as regenerative braking. Current regenerative braking is not very efficient, mostly because the battery cells cannot recouperate from such rapid recharging. New carbon ultra-capacitors will be able to accommodate the rapid recharging that occurs by regenerative braking, thus recollecting otherwise lost energy. Rapid charging will also be possible when using batteries enhanced with the new carbon ultra-capacitors, therefore reducing the amount of time spent waiting for an electric vehicle’s battery to be recharged. NAWA’s ultra-capacitors are still under development, but plans for testing in automotive applications is scheduled within the next five years. -taken from