Posts Tagged ‘aircraft’

New Fighter Pilot Technology Saves Lives

Auto-GCAS stands for Automatic Ground Collision Avoidance System and plays an important role in safety for fighter pilots when they enter into combat. According to the Society of Automotive Engineers, a large number of fatal accidents happen on the ground, or what is often referred to as Controlled Flight into Terrain (CFIT). Due to the high-level of collisions both mid-level air and on the ground, the Defense Safety Oversight Council (DSOC) partnered with the Air Force Research Laboratory (AFRL) to design a way to keep fighter pilots safer and less prone to CFIT. The result is the implementation of Auto-GCAS on F-16 Fighting Falcons and the Lockheed Martin F-35 Lighting II aircraft.

A number of different factors can cause CFIT including unconsciousness and distraction and – until Auto-GCAS – pilots had no way to combat or prevent CFIT. The F-16 and the F-35 aircrafts now have Auto-GCAS to fight the dangers of CFIT and to reduce the number of related incidents. It does so through intricate algorithms and what is referred to as a digital terrain database; in other words, the technology can detect an impending crash, take control of the aircraft, and completely avoid contact with the imminent terrain. Specifically, SAE mentions that once the Auto-GCAS system determines that a crash is inevitable, it takes control, rolls to wings level, and executes a 5g pull until the aircraft clears the terrain.

Mark Wilkins and Finley Barfield received the prestigious Robert J. Collier Trophy from the National Aeronautic Association for their contribution to Auto-GCAS systems. SAE notes that since the F-16 was equipped with Auto-GCAS in 2014, seven airplanes and eight pilots have been saved. The hope is that further integration and innovation will take place, including further implementation of automatic air collision avoidance systems, implementation of ground/air collision avoidance systems and ways to implement Auto-GCAS into larger aircraft and unmanned aerial machines.

Taken from:

NASA Crash Tests Airliner

NASA just crash-tested a full-size commercial airliner in an attempt to learn more about crash-worthiness of large aircraft. The crash test, which drew a large crowd of spectators, happened at the NASA Langley Research Center’s Landing and Impact Research Facility (LandIR) – also known as “the gantry”. The aircraft used for the test was a Fokker F28 jet, which was dropped into the landing target from a height of approximately 150 feet in the air. The Fokker F28 was outfitted with many state of the art sensors designed to capture as much data as possible from the crash. The Fokker F28 was also painted in a special pattern that made the aircraft look a lot like a black and white spotted leopard. The black spots on the fuselage and wings of the plane were painted on the F28 to assist in determining the damage assocated to each component during the impact with the earth. High-tech cameras outfitted around the research facility are designed to capture many frames of data as the aircraft falls, and the spots assist in determining aircraft crush associated with the crash landing forces. Seated inside the Fokker F28 airliner were many crash test dummies, or more specifically Warrior Injury Assessment Manikin (WIAMan) from the US Army. These specialized crash test dummies are equipped with force sensors that model the impact severities present to the airliner passengers during the crash. The purpose of this crash is to begin to learn about crash worthiness of airliners. The Federal Aviation Administration is in the process of establishing standards for aircraft crash worthiness for large aircraft in an attempt to design safer, more resilient commercial aircraft. Previous crash tests simply dropped aircraft from a vertical position, and this particular impact allowed the aircraft to sail from a sideways position into the crash landing site. The test will allow researchers the ability to define shortcomings in aircraft design so that they can be improved upon, resulting in a much safer aircraft of the future.

-taken from

Boeing To Fix Their 737 Aircraft

Boeing has been in the news recently amid the issues that have been plaguing their aircraft. Their 737 MAX commercial aircraft in particular has been the victim of a couple of serious crashes, resulting in a lot of bad press for Boeing and a lack of consumer confidence in their aircraft. What caused the 737 MAX aircraft to crash? The United States Government is working on releasing official reports on the two accidents and the preliminary report on the accident that occurred on Ethiopian Airlines Flight 302 has been released. Results from the preliminary report show that the airplane’s Maneuvering Characteristics Augmentation System, otherwise known as MCAS, inadvertently activated in response to incorrect signals from the aircraft’s flight angle of attack information. The aircraft’s angle of attack, a key factor in keeping an aircraft afloat in the air, is closely monitored by the 737’s Maneuvering Characteristics Augmentation System and the MCAS is supposed to activate under certain conditions or if the angle of attack reaches certain thresholds. The preliminary reports show that incorrect activation of the Maneuvering Characteristics Augmentation System caused a situation where the flight’s pilots in command were unable to compensate for, ultimately resulting in the aircraft crashes. Pilots are typically under significant stress during flying as it is, and counteracting an improperly functioning system such as the Maneuvering Characteristics Augmentation System can quickly overwhelm the pilot to the point of crashing. In an attempt to counteract the improperly functioning Maneuvering Characteristics Augmentation System, Boeing plans to roll out a software update which will allow the pilots to safely overcome the Maneuvering Characteristics Augmentation System and manually control the airplane should a system failure happen again. It is unclear as to when Boeing will release the software updates, however they are currently testing the software updates in demo flights.

-taken from

NASA Developing Supersonic Flight

The National Aeronautics and Space Administration (NASA) recently awarded a contract to Lockheed Martin to develop a new supersonic aircraft for use as a passenger plane. The project is put in place to test new supersonic technologies in an attempt to reduce the noise levels of sonic booms from these large aircraft. Supersonic aircraft development is nothing new. In fact, early X prototype aircraft were developed in the 1940’s and 1950’s and these aircraft were capable of traveling above the speed of sound. However, using supersonic flight for passenger planes has had a much more troubled history. Concord airplanes, used in the 1970’s for over thirty years in all areas across the world, were capable of reducing trans-continental flight times significantly. The problem with Concord planes was not the speed at which they traveled, but the significant sonic boom that the aircraft created when traveling at or above the speed of sound. In fact, the sonic boom from aircraft has been known to break windows and cause minor structural damage to buildings. Despite the drawbacks to supersonic flight, the appeal of short flights from continent to continent is very appealing. This is why NASA has awarded a new contract to Lockheed Martin in an attempt to reduce the effect of sonic boom caused by aircraft flying at the speed of sound. The new concept aircraft, dubbed the “Low Boom Flight Demonstration”, will be used to test new technologies that are aimed at reducing the effects of sonic booms. New aircraft hull designs are theoretically supposed to reduce the sound of a sonic boom to acceptable levels. In fact the aircraft being designed by Lockheed Martin will theoretically only produce a sonic boom that is as loud as a car door slamming, or repeated doors slamming over a period of time. Supersonic flight technologies are gaining rapid attention in many sectors across the world and NASA is not the only group to be focused on improving this mode of flight. In fact, DOD’s Defense Advanced Research Projects Agency (DARPA) is also looking into supersonic flight technologies to counter the recent efforts that have been made by China in supersonic flight. -Taken From

European Union Developing Drone Airspace

The European Union is working to develop a new type of airspace that is focused on operation of drones. Drones, or unmanned aerial vehicles (UAV for short) are becoming more and more popular throughout the world and the European Union is proactively developing a system to accommodate these new aircrafts. Drone traffic management poses a unique number of challenges. Mostly, because of the sheer number of drones that are flown in the sky, monitoring and managing positioning of drones and keeping drones away from manned aircraft is a significant challenge. Also, because drones are very small, many drones are not effectively tracked by current technology. The European Union is developing a system to accomplish effective drone flight management by next year. The Geneva based drone body that handles air navigation, Skyguide, recently joined forces with AirMap, a traffic management system, to collectively develop an infrastructure to manage drone flight across all of Europe in an airspace for low-level flight dubbed U-Space. U-Space will be defined as a flight altitude from ground level up to about 150 meters in height for which drone flight will be managed. New surveillance technologies developed for U-Space will be able to effectively track drone flights in U-Space. In the past five years, Skyguide flight requests have increased over ten times, indicating that drone operation is increasing dramatically. While collectively managing drones that fly in U-space and follow protocols set forth by Skyguide pose little threat to manned aircraft, those UAV drones that are flying unauthorized in U-Space may pose significant threat by flying too high, flying without proper tracking devices, or other illegal operations. Because of this Skyguide and AirMap are working to develop a Universal Traffic Management system that will not only track drones that have proper on-board tracking devices, but also track those drones that do not have the tracking devices installed, or the tracking devices were disabled. U-space regulations are currently being developed to cover a variety of flight conditions. -taken from

Boeing Developing Cargo Drone

Boeing recently unveiled a new prototype unmanned cargo drone that is currently under development. The drone, more appropriately called an unmanned aerial vehicle, or UAV, is being developed for use as a logistics operations support vehicle for the military and for commercial purposes. The drone will be electric powered and will be able to carry a 500 pound payload for cargo operations. Boeing is developing the drone as a flying test bed to be used during development of other concurrent projects including the passenger-carrying Aurora Flight Sciences aircraft that was recently transitioned into an unmanned aerial vehicle. Steve Nordlund, president of Boeing’s Horizon X, stated that, with this project, the integration of unmanned aerial systems must be developed with safety in mind, and stated that Boeing will be at the forefront of shaping the future of autonomous flight. Boeing’s Horizon X led the development of the cargo drone with its newly acquired Near Earth Autonomy from Carnegie Mellon University’s Robotics Institute. Near Earth Autonomy is developing a software platform complete with sensory inputs that enable aircraft ranging from small sub-meter drones to full scale aircraft to inspect and survey terrain, buildings, and structures autonomously. The Near Earth software and sensors will be implemented on Boeing’s cargo drone to assist in navigation and sensory input. Boeing’s Near Earth Autonomy has already been implemented on full-size autonomous helicopters in partnership with the US Army. Integration of the autonomous systems into full scale aircraft for cargo purposes was also completed for the US Marines recently. In addition to developing a cargo drone, Boeing will be continuing development of other autonomous flight systems with Aurora Flight Sciences, including a joint venture that is being developed with Uber to create a passenger specific autonomous flying vehicle that will be able to transport passengers from point to point. -taken from

New Aircraft Will Utilize Composite Materials

Aerospace companies Boeing and Airbus are working on developing new components to aid in developing new aircraft structures. Forecasts of aircraft sales show that the worldwide demand of large passenger airplanes will increase and an overall production number of up to 40,000 new aircraft may be realized in the next 20 years. To meet this new demand, Boeing and Airbus are working on developing new honeycomb panels that are designed to be structurally stiff, strong, and importantly, easy to assemble and produce. For the increase in aircraft demand, new aircraft structures must be easy to assemble and sub-components must be manufactured rapidly. The new structure composites or sandwiches are being developed for Boeing and Airbus by Belgium Company EconCore, along with Diehl Aircabin. The sandwich structures consist of a lightweight inner honeycomb lattice that is sandwiched between two thin layers of either aluminum or other lightweight material, to create a structure that is lightweight, strong, and has excellent thermal insulating qualities. Insulating against the cold external atmosphere while aircraft are in flight is crucial for passenger comfort and safety. In addition to the insulating properties, the inner honeycomb lattice can be made out of lightweight polycarbonate to create an excellent fire barrier within the sandwich structure. Polycarbonate is strong and resists flammability, making it a good choice for many aircraft structures. The process developed by EconCore can be formed into many different shapes; however joining the layers of the sandwich material together may pose another problem. To remedy this issue, new formulae of bonding adhesives are being developed to properly secure the components together. The benefit of using bonding adhesives instead of traditional rivets, screws, or other hardware, is the weight savings, however ensuring that the bonds between composite components remains solid for the life of the aircraft is being tested before it is put into production. -taken from

Military Develops Unmanned Aircraft

The United States Marine Corps is working on a few autonomous aircraft projects to enhance their performance in the battlefield. These aircraft are being designed to drop off supplies and ordinance to troops while located in remote areas that are otherwise difficult to reach without the use of specialized piloting techniques. In recent demonstration flights, autonomous helicopters were able to successfully drop off supplies while located within a test area. The company that is working on the autonomous development, Aurora Flight Science, retrofitted a UH-1H helicopter with autonomous sensors and cameras as well as LIDAR radar in order to be able to fly autonomously. The UH-1H helicopter was first developed in the 1950’s and 1970’s as a general-use helicopter. The UH-1H was made famous during the Vietnam War and is still in use today for many purposes. The Office of Naval Research’s (ONR) Autonomous Aerial Cargo Utility System (AACUS) program is developing a flight apparatus that can be retrofitted to more than just UH-1H helicopters. The goal is to make an aircraft-agnostic system that can be used on multiple flight platforms and can be controlled by a simple tablet-based system on the ground by troop deployments. The ground-based control will be simple enough to use that it will not require any advanced training in order to call in for re-supply missions or other support. Aurora Flight Science’s system allows for vertical flight aircraft to detect and identify multiple hazards in the flight path of the aircraft. After detection, the hazards can be safely avoided using the built-in computers that control the aircraft at all times. The Autonomous Aerial Cargo Utility System has transitioned to the final stages before being used in the field. The United States Marine Corps is now performing experimentation and potential acquisition on the system. Autonomous Aerial Cargo Utility System is also developing a high-performance vertical flight system, named Orion that is capable of flying for approximately 100 hours with a payload of about 1000 lbs. This unmanned aerial vehicle will is being developed under a new contract with the military and will be suitable for deployment anywhere in the world. -taken from