Autonomous Driving and Fuel Efficiency

TuSimple – a San Diego-based company that designs autonomous driving technology for the trucking industry – claims that their autonomous driving technology reduces fuel consumption by 10%. In terms of fuel saved, TuSimple asserts that a 10% reduction across the board would be equivalent to 4 billion gallons of fuel. TuSimple arrived at these figures by conducting a study with the Jacobs School of Engineering at the University of California San Diego. The study examined how autonomy impacts fuel consumption.

The test was conducted by equipping autonomous trucks with what is known as black box technology. This technology tracks and records data pertaining to the vehicle’s driving performance, including statistics such as speed, GPS location, and distance to name a few. In order to gauge fuel consumption from the black box data, TuSimple’s researchers relied on the Virginia Tech Comprehensive Power-based Fuel Consumption model which combines the function of speed, location, acceleration and braking to derive estimates. Researchers also equipped manually driven trucks with black box technology so that they could compare fuel efficiency between manual and autonomous trucks.

Once the manual and autonomous trucks had black box technology installed, researchers looked at fuel consumption at different ranges of speeds. According to researchers, the goal was to determine whether fuel efficiency changed at all based on speed. Based on the study, TuSimple concludes that the greatest fuel savings between manual and autonomous trucks happen while driving at slower speeds that involve a higher frequency of acceleration and braking. Conversely, TuSimple reports that highway speeds showed very little difference in fuel efficiency between autonomous and manual trucks. In conclusion, TuSimple believes that autonomous trucking can significantly reduce fuel consumption and asserts that if all medium- and heavy-duty trucks adopted their self-driving technology, that CO2 emissions would be cut by 42 million metric tons per year.

Taken from: www.sae.org

Engine Developers Face New Challenges

Engine developers face new trends in the industry that significantly influence how they produce engines for heavy-duty vehicles. Their main areas of concern include machine ownership patterns, political forces such as government regulations, and getting new products to the market quicker and more efficiently. Caterpillar Industrial Power Systems designed the new C3.6 engine with these factors in mind, stating specifically that customer feedback and lower owning and operating costs were at the top of their priorities list. According to Caterpillar, the result is the compact C3.6 engine that is electronically turbocharged, giving it the capability to produce 134-hp, more power density, and better torque than its predecessor.

As for machine ownership patterns, the product marketing manager for Caterpillar – Alex Eden – explains that customers are shifting towards a rental economy rather than the traditional ownership model. Instead of buying heavy-duty vehicles and machines, customers and fleets are looking to rent them. This raises questions about future sales processes and product cycles that are yet to be answered.

In addition to market influences, government regulations put pressure on engine developers with measures such as CO2 and emissions regulations, air quality improvement standards, and zero-emission zones for urban areas. In particular, demand grows for quieter engines that fall in line with urban noise restrictions. Noise, vibration and harshness (NVH) is a major concern in engine design. Pierpaolo Biffali – VP of product engineering at FPT Industrial – states that though the industry is heading for zero-emissions, clean diesel engines reduce CO2 levels in the meantime.

The last major factor that influences engine design is the competitiveness of the industry. When producing the C3.6, Caterpillar utilized a 3D printer to reduce production time. Developers printed an entire C3.6 engine in its various parts and examined how all the pieces would fit together before actual assembly. When the parts arrived, they assembled the engine faster and more efficiently than they had without the 3D printer which is crucial to remaining competitive in the market. Caterpillar believes that technology like this will help them remain competitive in the future by getting products to the market faster without sacrificing quality.

Taken from: www.sae.org

Airfare or Cab Fare? How About Both?

There may soon be a new way to take a cab from point A to point B: through the air. A subsidiary of Boeing – Aurora Flight Sciences – tested its first autonomous personal air vehicle (PAV) in January and during the test, the PAV successfully executed its takeoff, hovering, and landing. The aircraft was not operated by a pilot but had two dummies sitting in the cockpit. The PAV is powered by an electric propulsion system that consists of 8 lift motors and a cruise propeller in the back. When it is launched, it is expected to be able to travel up to 50 miles in one flight. Boeing’s hope is to produce autonomous electric air vehicles that will be cleaner and quieter than aircraft vehicles that are currently available.

An amazing feature of the PAV is its ability to hover, conduct forward motion, and switch off between the two during flight. Ideally, air taxis will be able to lift passengers straight up off the ground, hover when necessary, and fly them to wherever they need to go. The idea of taking an airborne taxi sounds like something reserved for top executives and millionaires but this business concept is modeled on the same ride-sharing services that Uber and Lyft use. In fact, Uber has stated that it hopes to provide air taxi service in Dallas and Los Angeles as soon as 2023.

The concept of autonomous air vehicles is not new to Aurora Flight Sciences. Since its inception in 1989, Aurora has produced more than 30 autonomous air vehicles, including an autonomous cargo system for the United States Marines. This is especially useful to Marines when they find themselves in dangerous environments that make it difficult for traditional aircraft to penetrate.

Other aerospace manufacturers are working alongside Aurora to design and produce autonomous air vehicles, including Bell Helicopter and Airbus. Airbus is currently working to execute the first flight of is CityAirbus which will carry up to 4 passengers.

Taken from: www.asme.org

New Fighter Pilot Technology Saves Lives

Auto-GCAS stands for Automatic Ground Collision Avoidance System and plays an important role in safety for fighter pilots when they enter into combat. According to the Society of Automotive Engineers, a large number of fatal accidents happen on the ground, or what is often referred to as Controlled Flight into Terrain (CFIT). Due to the high-level of collisions both mid-level air and on the ground, the Defense Safety Oversight Council (DSOC) partnered with the Air Force Research Laboratory (AFRL) to design a way to keep fighter pilots safer and less prone to CFIT. The result is the implementation of Auto-GCAS on F-16 Fighting Falcons and the Lockheed Martin F-35 Lighting II aircraft.

A number of different factors can cause CFIT including unconsciousness and distraction and – until Auto-GCAS – pilots had no way to combat or prevent CFIT. The F-16 and the F-35 aircrafts now have Auto-GCAS to fight the dangers of CFIT and to reduce the number of related incidents. It does so through intricate algorithms and what is referred to as a digital terrain database; in other words, the technology can detect an impending crash, take control of the aircraft, and completely avoid contact with the imminent terrain. Specifically, SAE mentions that once the Auto-GCAS system determines that a crash is inevitable, it takes control, rolls to wings level, and executes a 5g pull until the aircraft clears the terrain.

Mark Wilkins and Finley Barfield received the prestigious Robert J. Collier Trophy from the National Aeronautic Association for their contribution to Auto-GCAS systems. SAE notes that since the F-16 was equipped with Auto-GCAS in 2014, seven airplanes and eight pilots have been saved. The hope is that further integration and innovation will take place, including further implementation of automatic air collision avoidance systems, implementation of ground/air collision avoidance systems and ways to implement Auto-GCAS into larger aircraft and unmanned aerial machines.

Taken from: www.sae.org

Automakers Implement Automatic Emergency Braking

According to the United States Department of Transportation and the Insurance Institute for Highway Safety, 10 vehicle manufacturers equipped more than 50% of their vehicles with automatic emergency braking (AEB) between 2017 and 2018. This is a significant increase from the previous year and proves how seriously the auto industry views vehicle and road safety. AEB systems are a form of crash avoidance technology that the NHTSA believes will significantly enhance vehicle safety on the roads. In fact, according to studies conducted by IIHS, vehicles equipped with AEB systems reduce rear-end accidents resulting in injuries by approximately 50%. Further, their studies showed that rear-end crashes involving third-party injuries were reduced by 59%. The technology works by detecting an object in front of the car using a variety of sensors and cameras. When the system detects an object, it alerts the driver but if the driver does not respond fast enough, the system takes over and applies the brakes instead.

The implementation of AEB systems by automakers is completely voluntary and part of a commitment made by 20 manufacturers to have crash avoidance technology installed in all passenger vehicles by 2022. The manufacturers who committed include Audi, BMW, Fiat Chrysler, Ford, General motors, Honda, Hyundai, Jaguar Land Rover, Kia, Maserati, Mazda, Mercedes-Benz, Mitsubishi Motors, Nissan, Porsche, Subaru, Tesla Motors, Toyota, Volkswagen, and Volvo. The underlying goal in implementing crash avoidance technology is to increase driver safety, decrease accident-related injuries, and prevent accidents from happening in the first place. In other words, many are hopeful that AEB and similar technology will help make roads and overall driving safer. Based on research, IIHS estimates that this particular effort will prevent nearly 30,000 crashes by 2025.

Taken from: www.nhtsa.gov

Boeing To Fix Their 737 Aircraft

Boeing has been in the news recently amid the issues that have been plaguing their aircraft. Their 737 MAX commercial aircraft in particular has been the victim of a couple of serious crashes, resulting in a lot of bad press for Boeing and a lack of consumer confidence in their aircraft. What caused the 737 MAX aircraft to crash? The United States Government is working on releasing official reports on the two accidents and the preliminary report on the accident that occurred on Ethiopian Airlines Flight 302 has been released. Results from the preliminary report show that the airplane’s Maneuvering Characteristics Augmentation System, otherwise known as MCAS, inadvertently activated in response to incorrect signals from the aircraft’s flight angle of attack information. The aircraft’s angle of attack, a key factor in keeping an aircraft afloat in the air, is closely monitored by the 737’s Maneuvering Characteristics Augmentation System and the MCAS is supposed to activate under certain conditions or if the angle of attack reaches certain thresholds. The preliminary reports show that incorrect activation of the Maneuvering Characteristics Augmentation System caused a situation where the flight’s pilots in command were unable to compensate for, ultimately resulting in the aircraft crashes. Pilots are typically under significant stress during flying as it is, and counteracting an improperly functioning system such as the Maneuvering Characteristics Augmentation System can quickly overwhelm the pilot to the point of crashing. In an attempt to counteract the improperly functioning Maneuvering Characteristics Augmentation System, Boeing plans to roll out a software update which will allow the pilots to safely overcome the Maneuvering Characteristics Augmentation System and manually control the airplane should a system failure happen again. It is unclear as to when Boeing will release the software updates, however they are currently testing the software updates in demo flights.

-taken from www.sae.org

New Drone Concepts From CES 2019

During the CES 2019 show in Las Vegas earlier this year, there were many different drone manufacturers displaying the newest technologies used in air travel. Drones are taking over many realms that were otherwise thought as unachievable. Amazon has been working with drones for years in order to develop a new method for shipment deliveries. Their work towards this goal has been met with much criticism due to the obvious obstacles that must be overcome, however the progress that Amazon has made has spurred other concepts for new technology. During the CES show, for example, there were manufacturers who were displaying autonomous taxi drones that are capable of carrying human passengers for relatively short distances. These drone taxis, such as the Bell Nexus, use vertical take off and landing technology and a high payload capacity to carry 5 passengers up to 150 miles in distance. While Bell originally planned for the Nexus to be flown by a pilot, new drone technology has made it possible to make the Nexus completely autonomous and capable of flying itself from one point to the next. The idea of aerial autonomous taxi services has caught the attention of ride share companies such as Uber. In fact, Uber has partnered with Bell to help promote the Nexus as a new vehicle for passenger transportation. While Uber has high hopes for the futuristic autonomous taxi drone technology, there are many obvious safety and legal concerns involved with developing this technology. For one, drones in general have become very well regulated by the Federal Aviation Administration because they are becoming so prevalent. Improper drone flights that pose safety hazards to manned aircraft are also becoming more prevalent and the reputation for drones in general is not a positive one. Because of the increase in regulations, new concepts for autonomous drones will require strict testing to ensure that passengers on drone taxis as well as other manned aircraft remain safe during flight. It will likely be quite a while before this technology sees commercial operation. However, regardless of the obstacles, companies like Bell and Uber are very optimistic that the future of passenger transportation will be accomplished by unmanned autonomous vehicles.

-taken from www.sae.org

Air Force Tests Autonomous Drones

The United States Air Force recently tested a new autonomous flight system for use on small unmanned aerial vehicles, or drones. The system was developed in conjunction with John’s Hopkins University. The unmanned aerial vehicle system is designed to communicate flight information, such as position, speed, and aircraft orientation back to an artificial intelligence system that is designed to control the aircraft if it has violated predetermined course information. The system, called the Testing of Autonomy in Complex Environments, or TACE for short, can monitor autopilot software and re-direct the unmanned aerial vehicle back to a safety area if it approaches a virtual border. This functionality could be useful for many purposes, and one main commercial use would be to prohibit drone flight around manned aircraft or within certain restricted airspace. Flights of unmanned aerial vehicles in prohibited areas is a common occurrence among amateur pilots and poses a significant safety risk to manned aircraft. A system to virtually block unmanned aerial vehicle flight from prohibited areas would be a step towards safer air travel.

The Testing of Autonomy in Complex Environments system also fulfills the function of an simulated entity for use with live aircraft flight. In other words, the Testing of Autonomy in Complex Environments system will be able to fly along other aircraft as a “virtual wingman” with simulated sensors, to enhance constructive flight training and during combat. An autonomous flying system could be a significant asset to the warfighter.  The Testing of Autonomy in Complex Environments development comes as a part of the 2018 National Defense Strategy to develop, test, and implement autonomous and AI systems for use by the Air Force. The Air Force’s Combined Test Force with John’s Hopkins University plans to conduct more autonomous flight testing of the Testing of Autonomy in Complex Environments system and will test on unmanned aerial vehicles that can fly up to 250 miles per hour during the summer of 2019.

-Taken From www.saemobilus.com