New Powertrain Technology Aims to Improve Engine Efficiency

Engineers and innovators continue to seek out new ways to improve engine efficiency, performance, and to reduce the amount of fuel consumed while driving. Changes to traditional systems in the internal combustion engine have already taken place and continue to advance the cause towards greater efficiency, but now engineers are looking to make changes to other parts of vehicles as well.

One area is the transmission. For example, the Detroit Integrated Powertrain Transmission has various sensors and controllers installed that improve engine performance by having the transmission communicate with the engine. The designers and engineers behind the technology believe these changes to the vehicle’s powertrain can help its engine produce power more efficiently. A variety of different functions exist, including one called eCoast which can sense what sort of terrain the vehicle is traveling on and then change engine rpm based on that data. When more power is needed, the engine rpms go back up to produce that power. Another function known as Skip Shift changes how the vehicle shifts through its gears while accelerating. Brian Daniels, manager of Detroit Powertrain and Components, explains that instead of a vehicle starting in first gear, then climbing from first gear to second, then from second to third, etc., Skip Shift technology can determine which gear the vehicle has the ability to start in. Daniels asserts that this technology can reduce the time and power needed to get up to speed which can ultimately save fuel.

Another change to traditional vehicle design is in the axles; specifically in their ratio design. Engineers and designers are looking to improve axle ratios in the hopes of improving fuel economy and efficiency. They assert that faster axle ratios enable vehicle engines to down-speed.  This means that the vehicle can maintain highway speeds at lower engine rpms and therefore consume less fuel without sacrificing functionality.

Taken from: https://www.sae.org/

Tags: ,