Posts Tagged ‘Drone’

Autonomous Aircraft To Help Fight Fires

Wildland fires are currently destroying many natural forested areas of the United States. These huge fires spread over natural terrain very rapidly and are difficult to control because they occur in remote areas, often burning everything in sight. Many people have lost their mountain homes due to wildland fires, and firefighters are having a difficult time controlling the fires from spreading further during the hot summer months. One weapon used against wildland firefighters is the heavy air tanker aircraft. Air tankers are designed to carry heavy payloads and when air tankers are used in wildland firefighting, they are equipped to carry enormous payloads of water or fire retardant to the location of the wildland fire and then drop their payload on the area of the fire as they fly overhead. Air tankers are invaluable in the fight against wildfires and are in high demand during fire season. Two companies, Thrush and Drone America, have teamed together to develop an autonomous air tanker that can be used to drop water and fire retardant on wildland fires while being piloted robotically. The autonomous air tanker is an enhancement of other drone-like aircraft currently in use by law enforcement and fire fighters. Current autonomous aircraft are used to monitor wildland fires from an aerial viewpoint, search for hot spots that may reignite, and photograph the spread of fires over time. Dropping a payload autonomously has significant benefits for emergency workers, however. Primarily, keeping pilots out of dangerous situations and flying over dangerous terrain is beneficial from a personnel standpoint. Also, autonomous aircraft have the benefit of being able to fly during the night time and navigate terrain successfully using onboard sensors. Since temperatures are usually lower at night, fires tend not to spread as quickly when the sun goes down, allowing autonomous air tankers to drop water and fire retardant on fires when they are less prone to spread. Plans for development are still under consideration, and teams from both companies are exploring other uses for autonomous aircraft as well. -taken from www.dronelife.com

European Union Developing Drone Airspace

The European Union is working to develop a new type of airspace that is focused on operation of drones. Drones, or unmanned aerial vehicles (UAV for short) are becoming more and more popular throughout the world and the European Union is proactively developing a system to accommodate these new aircrafts. Drone traffic management poses a unique number of challenges. Mostly, because of the sheer number of drones that are flown in the sky, monitoring and managing positioning of drones and keeping drones away from manned aircraft is a significant challenge. Also, because drones are very small, many drones are not effectively tracked by current technology. The European Union is developing a system to accomplish effective drone flight management by next year. The Geneva based drone body that handles air navigation, Skyguide, recently joined forces with AirMap, a traffic management system, to collectively develop an infrastructure to manage drone flight across all of Europe in an airspace for low-level flight dubbed U-Space. U-Space will be defined as a flight altitude from ground level up to about 150 meters in height for which drone flight will be managed. New surveillance technologies developed for U-Space will be able to effectively track drone flights in U-Space. In the past five years, Skyguide flight requests have increased over ten times, indicating that drone operation is increasing dramatically. While collectively managing drones that fly in U-space and follow protocols set forth by Skyguide pose little threat to manned aircraft, those UAV drones that are flying unauthorized in U-Space may pose significant threat by flying too high, flying without proper tracking devices, or other illegal operations. Because of this Skyguide and AirMap are working to develop a Universal Traffic Management system that will not only track drones that have proper on-board tracking devices, but also track those drones that do not have the tracking devices installed, or the tracking devices were disabled. U-space regulations are currently being developed to cover a variety of flight conditions. -taken from www.sae.org

Boeing Developing Cargo Drone

Boeing recently unveiled a new prototype unmanned cargo drone that is currently under development. The drone, more appropriately called an unmanned aerial vehicle, or UAV, is being developed for use as a logistics operations support vehicle for the military and for commercial purposes. The drone will be electric powered and will be able to carry a 500 pound payload for cargo operations. Boeing is developing the drone as a flying test bed to be used during development of other concurrent projects including the passenger-carrying Aurora Flight Sciences aircraft that was recently transitioned into an unmanned aerial vehicle. Steve Nordlund, president of Boeing’s Horizon X, stated that, with this project, the integration of unmanned aerial systems must be developed with safety in mind, and stated that Boeing will be at the forefront of shaping the future of autonomous flight. Boeing’s Horizon X led the development of the cargo drone with its newly acquired Near Earth Autonomy from Carnegie Mellon University’s Robotics Institute. Near Earth Autonomy is developing a software platform complete with sensory inputs that enable aircraft ranging from small sub-meter drones to full scale aircraft to inspect and survey terrain, buildings, and structures autonomously. The Near Earth software and sensors will be implemented on Boeing’s cargo drone to assist in navigation and sensory input. Boeing’s Near Earth Autonomy has already been implemented on full-size autonomous helicopters in partnership with the US Army. Integration of the autonomous systems into full scale aircraft for cargo purposes was also completed for the US Marines recently. In addition to developing a cargo drone, Boeing will be continuing development of other autonomous flight systems with Aurora Flight Sciences, including a joint venture that is being developed with Uber to create a passenger specific autonomous flying vehicle that will be able to transport passengers from point to point. -taken from www.sae.org