Boeing Developing Cargo Drone

Boeing recently unveiled a new prototype unmanned cargo drone that is currently under development. The drone, more appropriately called an unmanned aerial vehicle, or UAV, is being developed for use as a logistics operations support vehicle for the military and for commercial purposes. The drone will be electric powered and will be able to carry a 500 pound payload for cargo operations. Boeing is developing the drone as a flying test bed to be used during development of other concurrent projects including the passenger-carrying Aurora Flight Sciences aircraft that was recently transitioned into an unmanned aerial vehicle. Steve Nordlund, president of Boeing’s Horizon X, stated that, with this project, the integration of unmanned aerial systems must be developed with safety in mind, and stated that Boeing will be at the forefront of shaping the future of autonomous flight. Boeing’s Horizon X led the development of the cargo drone with its newly acquired Near Earth Autonomy from Carnegie Mellon University’s Robotics Institute. Near Earth Autonomy is developing a software platform complete with sensory inputs that enable aircraft ranging from small sub-meter drones to full scale aircraft to inspect and survey terrain, buildings, and structures autonomously. The Near Earth software and sensors will be implemented on Boeing’s cargo drone to assist in navigation and sensory input. Boeing’s Near Earth Autonomy has already been implemented on full-size autonomous helicopters in partnership with the US Army. Integration of the autonomous systems into full scale aircraft for cargo purposes was also completed for the US Marines recently. In addition to developing a cargo drone, Boeing will be continuing development of other autonomous flight systems with Aurora Flight Sciences, including a joint venture that is being developed with Uber to create a passenger specific autonomous flying vehicle that will be able to transport passengers from point to point. -taken from

New Aircraft Will Utilize Composite Materials

Aerospace companies Boeing and Airbus are working on developing new components to aid in developing new aircraft structures. Forecasts of aircraft sales show that the worldwide demand of large passenger airplanes will increase and an overall production number of up to 40,000 new aircraft may be realized in the next 20 years. To meet this new demand, Boeing and Airbus are working on developing new honeycomb panels that are designed to be structurally stiff, strong, and importantly, easy to assemble and produce. For the increase in aircraft demand, new aircraft structures must be easy to assemble and sub-components must be manufactured rapidly. The new structure composites or sandwiches are being developed for Boeing and Airbus by Belgium Company EconCore, along with Diehl Aircabin. The sandwich structures consist of a lightweight inner honeycomb lattice that is sandwiched between two thin layers of either aluminum or other lightweight material, to create a structure that is lightweight, strong, and has excellent thermal insulating qualities. Insulating against the cold external atmosphere while aircraft are in flight is crucial for passenger comfort and safety. In addition to the insulating properties, the inner honeycomb lattice can be made out of lightweight polycarbonate to create an excellent fire barrier within the sandwich structure. Polycarbonate is strong and resists flammability, making it a good choice for many aircraft structures. The process developed by EconCore can be formed into many different shapes; however joining the layers of the sandwich material together may pose another problem. To remedy this issue, new formulae of bonding adhesives are being developed to properly secure the components together. The benefit of using bonding adhesives instead of traditional rivets, screws, or other hardware, is the weight savings, however ensuring that the bonds between composite components remains solid for the life of the aircraft is being tested before it is put into production. -taken from

Military Develops Unmanned Aircraft

The United States Marine Corps is working on a few autonomous aircraft projects to enhance their performance in the battlefield. These aircraft are being designed to drop off supplies and ordinance to troops while located in remote areas that are otherwise difficult to reach without the use of specialized piloting techniques. In recent demonstration flights, autonomous helicopters were able to successfully drop off supplies while located within a test area. The company that is working on the autonomous development, Aurora Flight Science, retrofitted a UH-1H helicopter with autonomous sensors and cameras as well as LIDAR radar in order to be able to fly autonomously. The UH-1H helicopter was first developed in the 1950’s and 1970’s as a general-use helicopter. The UH-1H was made famous during the Vietnam War and is still in use today for many purposes. The Office of Naval Research’s (ONR) Autonomous Aerial Cargo Utility System (AACUS) program is developing a flight apparatus that can be retrofitted to more than just UH-1H helicopters. The goal is to make an aircraft-agnostic system that can be used on multiple flight platforms and can be controlled by a simple tablet-based system on the ground by troop deployments. The ground-based control will be simple enough to use that it will not require any advanced training in order to call in for re-supply missions or other support. Aurora Flight Science’s system allows for vertical flight aircraft to detect and identify multiple hazards in the flight path of the aircraft. After detection, the hazards can be safely avoided using the built-in computers that control the aircraft at all times. The Autonomous Aerial Cargo Utility System has transitioned to the final stages before being used in the field. The United States Marine Corps is now performing experimentation and potential acquisition on the system. Autonomous Aerial Cargo Utility System is also developing a high-performance vertical flight system, named Orion that is capable of flying for approximately 100 hours with a payload of about 1000 lbs. This unmanned aerial vehicle will is being developed under a new contract with the military and will be suitable for deployment anywhere in the world. -taken from

European Union Develops Strict Emissions Standards

The European Union is developing new emissions standards that are aimed at decreasing pollution caused by motor vehicles. New emissions standards are rather widespread, however those being developed in Europe are some of the more stringent standards and many local municipalities are aiming at restricting pollution causing emissions even further. The typical effort behind these standards is to decrease the amount of diesel emissions caused by large long-haul trucks, vans, and buses. In fact, the European Union’s Mobility Package proposal calls for a 15 percent reduction of all CO2 emissions by 2025. Levels of emissions will be 30 percent lower than current 2021 goals by the year 2030. Specific targets for large vehicles, such as trucks and semis, are being developed currently and will be set in place sometime in 2018. Currently, emissions goals cover small passenger vehicles as well as larger vehicles such as delivery vans. The problem with this approach is that the emissions produced by smaller vehicles can be limited by current technology very easily, however emissions produced by larger vehicles is more difficult to control. Large vehicles that travel short trips, such as delivery vans in municipal areas, may be good candidates for electric drivetrains because the range traveled during normal deliveries is on the order of several miles or less. Electric drivetrains produce no emissions, however the range of electric vehicles is limited to the capacity of the batteries, which can be expensive to produce. For long-haul trucking, diesel will still be necessary for some time. Unfortunately, the cost of developing proper infrastructure, as well as unit development costs of batteries and electric drivetrains, will keep diesel as the front-runner for fueling long-range deliveries and cross-country shipping. Other transitional options away from diesel, such as natural gas or hydrogen power, are options that may be worth investigating to reduce emissions from long-range heavy equipment. -taken from

Komatsu Developing Artificial Intelligence

Komatsu is developing a system of artificial intelligence to be used in large-scale construction sites. The artificial intelligence is being developed in an attempt to gather more data on the heavy equipment used in the construction sites and, more importantly, to increase the safety to equipment operators and ground personnel. Komatsu is one of the world’s leading manufacturers of heavy equipment, mining equipment, and other construction equipment. Komatsu is developing the artificial intelligence system along with NVidia, who is well-known as a computer hardware developer in industries such as commercial, retail, and medical. The construction artificial intelligence system, dubbed SmartConstruction, will have the capability to control heavy equipment and can identify and distinguish between ground personnel, inanimate objects, and heavy equipment around the entire construction site. Komatsu will be using NVidia’s Jetson computing platform as a basis for the artificial intelligence development. The Jetson platform is very small, about the size of a credit card, and powerful to compute virtual surroundings taken from the individual cameras used in all of Komatsu’s construction equipment. In addition to ground level cameras, drones will be used overhead the construction site to provide real-time updates as to local positioning of resources, equipment, and personnel. The drones will be operated by SkyCatch, another feature provided by NVidia as part of their Inception Program Startups. The first locations to use the new artificial intelligence technology will be in Japan, where an aging workforce and lack of qualified labor bring strong demand for computer-controlled equipment. In Japan, the technology will be fine-tuned and validated. However, the entire world will benefit from the new technology and after test runs are completed, the AI technology will be released worldwide. Komatsu is anticipating that SmartConstruction will decrease the dangers typically found in construction and mining work sites, all while increasing productivity and reducing costs to the end-users. -taken from

Caterpillar’s UTV Now Available

Caterpillar Heavy Equipment has recently entered the Utility Vehicle (UTV) market with two brand new vehicles. The Caterpillar UTV’s are similar in size and capability to existing UTV’s such as the Polaris Ranger, Kawasaki Mule, or John Deere Gator. This is the first ever attempt by Caterpillar to make a vehicle that fits within this market. The Caterpillar CUV82 is a gasoline-powered utility vehicle with bench seating, a tubular cage surrounding the occupant compartment, and a small pickup bed over the rear wheels. The CUV82 will have a top speed of around 45 mph and can carry 1000 lbs of cargo with a 2000 lb towing capacity. The CUV102D is the bigger brother to the CUV82 and will be powered by a small displacement diesel engine. The CUV102D has similar load rating capacities and can travel approximately 25 mph. The Caterpillar UTV’s are designed to be used by work force as support for operations or as a farm utility vehicle, similar to offerings from other heavy equipment manufacturers, such as Bobcat and John Deere. Both Caterpillar utility vehicles will share similar drivetrains including continuously variable transmissions (CVT). Options include either two or four-wheel-drive and the option to add lockers to the four-wheel-drive version for use in rough off-road terrain. Ground clearance for both models is 10.5 inches. Caterpillar has contracted Textron Specialized Vehicles in Thief River Falls, Minnesota to manufacture their utility vehicles. Textron manufactures their own line of utility vehicles, as well as vehicles under other name brands such as Arctic Cat. Caterpillar and Textron developed the utility vehicles collaboratively and Caterpillar while taking into consideration recommendations from customers and dealerships on included functionality, features, and capability. The Cat ‘Utes were tested extensively and thoroughly as part of their development and a new version with seating for an entire crew will be released in Fall 2018. The Caterpillar UTV’s are on sale now. taken from

Polestar is Making Performance Vehicles

Volvo is working on developing a new performance brand of vehicles. The brand, Polestar, has big plans to create a series of electric hybrid luxury and performance vehicles that will be completely stand-alone from Volvo. The first vehicle, the Polestar 1, will be revealed in the next couple of years as a performance two-door sedan that seats four. The Polestar 1 will be primarily an electric powered vehicle, however will also have a small internal combustion engine for extended range. The Polestar 1 will have about 600 horsepower, about 740 ft-lb of torque, and will be designed as a true driver’s car with many high-performance features and sports car styling.  The 600 horsepower rating will come from a fully electric drivetrain that delivers power to the wheels with specialized torque vectoring technology that will allow the car to distribute wheel torque to individual wheels and reduce the likelihood of tire slippage during heavy acceleration. According to Polestar, the Polestar 1 will be the first car to incorporate specialized Ohlins electronically controlled suspension and the chassis will be super lightweight because it will be formed from sheets of carbon fiber. Polestar and Volvo are taking aim at a new generation of mid-sized electric or hybrid vehicles that provide high-performance and low emissions. Other vehicles in this category are being developed by major brands, however Tesla may be the only true competitor to Polestar when the Polestar 1 comes out until other manufacturers join in the competition. Polestar is developing the Polestar 1 on scalable architecture which will allow their engineers to share similar chassis and design concepts between several different models of vehicle. Polestar has plans to eventually offer other electric hybrid vehicles in their lineup, including a sport utility vehicle dubbed the Polestar 3. Production of the Polestar 1 will commence in China in time for a mid-2019 release date. -taken from

Ford and General Motors are Developing New Electric Cars

Are gasoline and diesel powered vehicles a dying breed? A look into the future shows that electric vehicles will take over the need of all fossil-fueled vehicles, however estimates on when this transition will begin to take effect vary across the board. Certainly the benefits of electrical vehicles are very apparent, including reduced pollution, higher efficiency, and reduced maintenance costs. However, there are still some very large obstacles in the way of transitioning from old fossil fueled vehicles to high-tech, electrical vehicles. Primarily, new infrastructure must be put in place to “re-fuel” electric vehicles, or in other words, re-charge the electric vehicles when batteries are depleted. Also battery production and replacement at end-of-life are important considerations, especially considering that the cost of batteries is very high, and high-capacity car batteries only currently provide relatively short range for vehicle mileage. Regardless, transitioning to electric vehicles is imminent. General Motors and Ford have seen the writing on the wall. Both companies have big plans in place to increase electric vehicle production significantly between now and 2020. The companies are planning on introducing both hybrid and full electric vehicles as part of new vehicle lineups in the upcoming years. Both companies are also learning the market trends based off of current hybrid and electric vehicles, such as the Chevrolet Bolt, in an effort to identify what drives consumers spending and desires. Ford has plans for many new hybrid or electric vehicles in the next several years, including a hybrid F150 pickup truck and other popular models. GM is planning a total of 20 new electric or hybrid vehicles by the year 2023 and has already begun plans for production and manufacturing. Transitioning away from fossil fueled vehicles will certainly not happen overnight, however. Infrastructure, as well as consumer acceptance of electric vehicles, are huge obstacles that will need to be overcome first. -Read More: